Significant figures

Masashi Kaneta

Institute for Excellence in Higher Education/ Department of Physics, Graduate School of Science,

Tohoku University

Significant Figures

- There is always an error in the measurement
- Some of you may learn Probability and Statistics in high school
- Two type of errors: Statistical and Systematic Error
- In this experimental course, "Accuracy = Significant figures" are emphasized
- Spreadsheet application (e.g. Excel, Numbers)
- By default setting, if zero continues in the digits after the decimal point, it will be erased without permission.
- There is NO setting of "significant figures" even if "the number of digits after the decimal point" is adjusted
- You need to set the number of digits in EACH cell with considering the significant figures for the value

Accuracy

- Example: Ruler
- You may read $1 / 10$ value of the smallest scale

Accuracy

You are sure, this point is at least more than 8.3 cm and less than 8.4 cm .

If you say, it is " 8.35 cm"

The last digit have uncertainty. 8.35 means more than 8.34 and less than 8.36

Accuracy of Rounded Numbers

- 1.0 and 1.00 are NOT the same
- If $x=1.0$
- The range of $x: 0.95 \leqq x<1.05$
- If $x=1.00$
- The range of $x: 0.995 \leqq x<1.005$
- In case of 8.35 and 8.350
$-x=8.35$
- $8.345 \leqq x<8.355$
$-x=8.350$
- $0.83495 \leqq x<8.3505$

Using the Supplementary Unit

- 8.35 cm is same value with
$-0.0835 \mathrm{~m}$
- 0.0000835 km
- $83500 \mu \mathrm{~m}$

This expression is WRONG in scientific manner

- You should keep the significant figures with any order of supplementary unit

Using the Supplementary Unit

- 8.35 cm is same value with
$-8.35 \times 10^{-2} \mathrm{~m}$
$-8.35 \times 10^{-5} \mathrm{~km}$
$-8.35 \times 10^{4} \mu \mathrm{~m}$
- It is better to use a power of 10
- It is clear to recognize the significant figures

Calculation with Measured Values

- In the calculation, you need to take care the significant figures of measured values
- For example, area of circle: S
- The radius $r=8.35 \mathrm{~cm}$
- $S=\pi \times r^{2}=3.14159265358979 \ldots . . \times(8.35)^{2}$
$=219.039693789914133275$.
Do you think
it makes sense to have too many digits?

Calculation with Measured Values

- The radius $r=8.35 \mathrm{~cm}$
- Means: $8.345 \mathrm{~cm} \leqq r<8.355 \mathrm{~cm}$
$-S=\pi \times r^{2}$
- more than or equal to $\pi \times(8.345)^{2}=218.7777449 \ldots$
- less than $\pi \times(8.355)^{2}=219.302095 \ldots$
- Meaningful digits are 3 digits
- $S=219 \mathrm{~cm}^{2}$
- In this examples is the case of multiplication
- How about the other case?
- Let's see the example from the subject 4 "Electrical resistivity"

Example

- In case of addition and subtraction, consider where the digits are accurate

Table shown in the textbook

$I(\mathrm{~mA})$	$V_{+}(\mathrm{mV})$	$V_{-}(\mathrm{mV})$	$V=\left(V_{+}-V_{-}\right) / 2(\mathrm{mV})$	$R=V / I(\Omega)$
0.00	0.002	0.002	0.000	-
2.00	0.049	-0.046	0.048	0.0237
4.00	0.097	-0.093	0.095	0.0238
\vdots	\vdots	\vdots	\vdots	\vdots
18.00	0.430	-0.427	0.429	0.0238

Example

- In case of addition and subtraction, consider where the digits are accurate

Table shown in the textbook

$I(\mathrm{~mA})$	$V_{+}(\mathrm{mV})$	$V_{-}(\mathrm{mV})$	$V=\left(V_{+}-V_{-}\right) / 2(\mathrm{mV})$	$R=V / I(\Omega)$
0.00	0.002	0.002	0.000	-
2.00	0.049	-0.046	0.048	0.0237
4.00	0.097	-0.093	0.095	0.0238
\vdots	\vdots	\vdots	\vdots	\vdots
18.00	0.430	-0.427	0.429	0.0238

2 digits of significant figures

Example

- In case of addition and subtraction, consider where the digits are accurate

Table shown in the textbook

$I(\mathrm{~mA})$	$V_{+}(\mathrm{mV})$	$V_{-}(\mathrm{mV})$	$V=\left(V_{+}-V_{-}\right) / 2(\mathrm{mV})$	$R=V / I(\Omega)$
0.00	0.002	0.002	0.000	-
2.00	0.049	-0.046	0.048	0.0237
4.00	${ }^{0.097}$	-0.093	0.095	0.0238
	:	:		\vdots
18.00	0.430	-0.427	0.429	0.0238
	$(0.049-(-0.046)) / 2=0.0475$			
s of				

Example

- In case of addition and subtraction, consider where the digits are accurate

Table shown in the textbook

$I(\mathrm{~mA})$	$V_{+}(\mathrm{mV})$	$V_{-}(\mathrm{mV})$	$V=\left(V_{+}-V_{-}\right) / 2(\mathrm{mV})$	$R=V / I(\Omega)$
0.00	0.002	0.002	0.000	-
2.00	0.049	-0.046	0.048	0.0237
4.00	0.097	-0.093	0.095	0.0238
\vdots	\vdots	\vdots	\vdots	\vdots
18.00	0.430	-0.427	0.429	0.0238

2 digits of significant figures
$(0.049-(-0.046)) / 2=0.0475$
" 2 " is integer to take the average.
That means that zeros continue infinitely after the decimal point. Infinite number of significant figures

Example

- In case of addition and subtraction, consider where the digits are accurate

Table shown in the textbook

$I(\mathrm{~mA})$	$V_{+}(\mathrm{mV})$	$V_{-}(\mathrm{mV})$	$V=\left(V_{+}-V_{-}\right) / 2(\mathrm{mV})$	$R=V / I(\Omega)$
0.00	0.002	0.002	0.000	-
2.00	0.049	-0.046	0.048	0.0237
4.00	0.097	-0.093	0.095	0.0238
\vdots	\vdots	\vdots	\vdots	\vdots
18.00	0.430	-0.427	0.429	0.0238

2 digits of significant figures
$(0.049-(-0.046)) / 2=0.0485$
" 2 " is integer to take the average. That means that zeros continue infinitely after the decimal point. Infinite number of significant figures

Significant digits are 3 digits after the decimal point

Example

- In the case of multiplication and division
- Adjust to the one with the smallest significant figures

Table shown in the textbook

$I(\mathrm{~mA})$	$V_{+}(\mathrm{mV})$	$V_{-}(\mathrm{mV})$	$V=\left(V_{+}-V_{-}\right) / 2(\mathrm{mV})$	$R=V / I(\Omega)$
0.00	0.002	0.002	0.000	-
2.00	0.049	-0.046	0.048	0.0237
4.00	0.097	-0.093	0.095	0.0238
\vdots	\vdots	\vdots	\vdots	\vdots
18.00	0.430	-0.427	0.429	0.0238

Example

- In the case of multiplication and division
- Adjust to the one with the smallest significant figures

Table shown in the textbook

$I(\mathrm{~mA})$	$V_{+}(\mathrm{mV})$	$V_{-}(\mathrm{mV})$	$V=\left(V_{+}-V_{-}\right) / 2(\mathrm{mV})$	$R=V / I(\Omega)$
0.00	0.002	0.002	0.000	-
2.00	0.049	-0.046	0.048	0.0237
4.00	0.097	-0.093	0.095	0.0238
\vdots	\vdots	\vdots	\vdots	\vdots
18.00	0.430	-0.427	0.429	0.0238

3 digits of significant figures

Example

- In the case of multiplication and division
- Adjust to the one with the smallest significant figures

Table shown in the textbook

$I(\mathrm{~mA})$	$V_{+}(\mathrm{mV})$	$V_{-}(\mathrm{mV})$	$V=\left(V_{+}-V_{-}\right) / 2(\mathrm{mV})$	$R=V / I(\Omega)$
0.00	0.002	0.002	0.000	-
2.00	0.049	-0.046	0.048	0.0237
4.00	0.097	-0.093	0.095	0.0238
\vdots	\vdots	\vdots	\vdots	\vdots
18.00	0.430	-0.427	0.429	0.0238

3 digits of significant figures

2 digits of Significant figures

Example

- In the case of multiplication and division
- Adjust to the one with the smallest significant figures

Table shown in the textbook

$I(\mathrm{~mA})$	$V_{+}(\mathrm{mV})$	$V_{-}(\mathrm{mV})$	$V=\left(V_{+}-V_{-}\right) / 2(\mathrm{mV})$	$R=V / I(\Omega)$
0.00	0.002	0.002	0.000	-
2.00	0.049	-0.046	0.048	0.0237
4.00	0.097	-0.093	0.095	0.0238
\vdots	\vdots	\vdots	\vdots	\vdots
18.00	0.430	-0.427	0.429	0.0238

3 digits of
significant figures

After the division Significant figures are 2 digits Correct number is 0.024

Example

- In the case of multiplication and division
- Adjust to the one with the smallest significant figures

Table shown in the textbook

$I(\mathrm{~mA})$	$V_{+}(\mathrm{mV})$	$V_{-}(\mathrm{mV})$	$V=\left(V_{+}-V_{-}\right) / 2(\mathrm{mV})$	$R=V / I(\Omega)$
0.00	0.002	0.002	0.000	-
2.00	0.049	-0.046	0.048	0.0237
4.00	0.097	-0.093	0.095	0.0238
\vdots	\vdots	\vdots	\vdots	\vdots
18.00	0.430	-0.427	0.429	0.0238

Example

- In the case of multiplication and division
- Adjust to the one with the smallest significant figures

Table shown in the textbook

$I(\mathrm{~mA})$	$V_{+}(\mathrm{mV})$	$V_{-}(\mathrm{mV})$	$V=\left(V_{+}-V_{-}\right) / 2(\mathrm{mV})$	$R=V / I(\Omega)$
0.00	0.002	0.002	0.000	-
2.00	0.049	-0.046	0.048	0.0237
4.00	0.097	-0.093	0.095	0.0238
\vdots	\vdots	\vdots	\vdots	\vdots
18.00	0.430	-0.427	0.429	0.0238

4 digits of
significant figures

Example

- In the case of multiplication and division
- Adjust to the one with the smallest significant figures

Table shown in the textbook

$I(\mathrm{~mA})$	$V_{+}(\mathrm{mV})$	$V_{-}(\mathrm{mV})$	$V=\left(V_{+}-V_{-}\right) / 2(\mathrm{mV})$	$R=V / I(\Omega)$
0.00	0.002	0.002	0.000	-
2.00	0.049	-0.046	0.048	0.0237
4.00	0.097	-0.093	0.095	0.0238
\vdots	\vdots	\vdots	\vdots	\vdots
18.00	0.430	-0.427	0.429	0.0238

3 of
3 digits of
significant figures

Example

- In the case of multiplication and division
- Adjust to the one with the smallest significant figures

Table shown in the textbook

$I(\mathrm{~mA})$	$V_{+}(\mathrm{mV})$	$V_{-}(\mathrm{mV})$	$V=\left(V_{+}-V_{-}\right) / 2(\mathrm{mV})$	$R=V / I(\Omega)$
0.00	0.002	0.002	0.000	-
2.00	0.049	-0.046	0.048	0.0237
4.00	0.097	-0.093	0.095	0.0238
\vdots	\vdots	\vdots	\vdots	\vdots
18.00	0.430	-0.427	0.429	0.0238

S of
3 digits of

4 digits of significant figures

Division of 4 digits and 3 digits of significant figures
Significant of figures of the result is 3 digits

Significant figures and Graph

- Calculation of the resistivity
- Thickness, width, radius, length: the smallest of significant figures is 2 digits
- Even if significant figures is 4 or 5 digits, significant figures of resistivity is 2 digits
- On the other hand, If you use 2 digits to make a graph, the distribution may become not smooth
- Method A: Use the values before rounding for plot

For example,
The result of calculation is 1.37
Significant figures is 2 digits The meaningful value is 1.4

$\mathrm{T}[\mathrm{K}]$	$\rho[\Omega \cdot \mathrm{cm}]$
5.5	1.37
12.0	1.32
20.5	1.26
24.5	1.22
30.5	1.14

Significant figures and Graph

- Calculation of the resistivity
- Thickness, width, radius, length: the smallest of significant figures is 2 digits
- Even if significant figures is 4 or 5 digits, significant figures of resistivity is 2 digits
- On the other hand, If you use 2 digits to make a graph, the distribution may become not smooth

Significant figures and Graph

- Calculation of the resistivity
- Thickness, width, radius, length: the smallest of significant figures is 2 digits
- Even if significant figures is 4 or 5 digits, significant figures of resistivity is 2 digits
- On the other hand, If you use 2 digits to make a graph, the distribution may become not smooth
- Method B: Use the values rounded with error bars that show the range of uncertainty

Significant figures and Graph

-When you plot graphs

- Always consider significant figures of the values
- You can use either solution A or B
- Please mention the reason why you select which method
- For example
- "The significant figures is 2 digits of the resistivity. But if I use the digits the graph, the data points will be discrete and will have a ratting distribution. Therefore, I used 3 digits to make the graph of the resistivity as a function of the absolute temperature."
- The important point is that you need to present what you understood about significant figures

